首页> 外文OA文献 >Improving the counting efficiency in time-correlated single photon counting experiments by dead-time optimization
【2h】

Improving the counting efficiency in time-correlated single photon counting experiments by dead-time optimization

机译:通过死区时间优化提高时间相关的单光子计数实验中的计数效率

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Time-Correlated Single Photon Counting (TCSPC) has been long recognized as the most sensitive method for fluorescence lifetime measurements, but often requiring “long” data acquisition times. This drawback is related to the limited counting capability of the TCSPC technique, due to pile-up and counting loss effects. In recent years, multi-module TCSPC systems have been introduced to overcome this issue. Splitting the light into several detectors connected to independent TCSPC modules proportionally increases the counting capability. Of course, multi-module operation also increases the system cost and can cause space and power supply problems. In this paper, we propose an alternative approach based on a new detector and processing electronics designed to reduce the overall system dead time, thus enabling efficient photon collection at high excitation rate. We present a fast active quenching circuit for single-photon avalanche diodes which features a minimum dead time of 12.4 ns. We also introduce a new Time-to-Amplitude Converter (TAC) able to attain extra-short dead time thanks to the combination of a scalable array of monolithically integrated TACs and a sequential router. The fast TAC (F-TAC) makes it possible to operate the system towards the upper limit of detector count rate capability (∼80 Mcps) with reduced pile-up losses, addressing one of the historic criticisms of TCSPC. Preliminary measurements on the F-TAC are presented and discussed.
机译:长期以来,与时间相关的单光子计数(TCSPC)是荧光寿命测量中最灵敏的方法,但通常需要“较长的”数据采集时间。由于堆积和计数损失的影响,此缺点与TCSPC技术的有限计数能力有关。近年来,已经引入了多模块TCSPC系统来克服此问题。将光分成几个连接到独立TCSPC模块的检测器,可以成比例地增加计数能力。当然,多模块操作还会增加系统成本,并可能导致空间和电源问题。在本文中,我们提出了一种基于新检测器和处理电子设备的替代方法,该检测器和处理电子设备旨在减少整个系统的死区时间,从而能够在高激发速率下进行有效的光子收集。我们提出了一种用于单光子雪崩二极管的快速有源淬灭电路,其最小死区时间为12.4 ns。我们还推出了一种新的时间幅度转换器(TAC),这得益于可扩展的单片集成TAC阵列和顺序路由器的结合,可以实现极短的空载时间。快速的TAC(F-TAC)使系统能够朝着探测器计数速率能力的上限(〜80 Mcps)运行,同时减少了堆积损失,解决了TCSPC的历史性批评之一。提出并讨论了F-TAC的初步测量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号